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Thermal Diffusivity Measurements by 
 ngstrfm's Method in a Fluid Environment 

B. Sundqvist  1 

Received March 12, 1990 

~ngstr6m's method has been used for measuring the thermal diffusivity, a, and 
the radial heat loss coefficients of a thin constantan wire, both in a vacuum and 
with the wire immersed in air and in four different liquids, and using 
temperature wave periods of 1 to 1000 s. The presence of a surrounding fluid 
medium causes errors of up to 90% in the measured values of a. It is shown 
that both the experimental errors and the radial heat loss coefficients can be 
accurately calculated using simple models, both at high and at low frequencies, 
and that a previously developed two-frequency model can be used to obtain 
accurate data for a even under these conditions, provided the frequency is high 
enough. We also present a new variety of Angstr6m's model, valid only at very 
low frequencies and with purely convective heat loss. 

KEY WORDS: ~ngstr6m's method; constantan; thermal conductivity; 
thermal diffusivity. 

1. I N T R O D U C T I O N  

We have previously studied the thermal  diffusivity, a, of several metals and  
alloys under  high pressures [ 1 - 3 ]  using a modified version [4]  of 

~ngs t r6m ' s  classical method  [5 -7 ] .  To avoid anisotropic strain, such 
measurements  must  be performed under  hydrostat ic  condi t ions  in a fluid 
pressure t ransmit t ing  medium,  in which case convection currents cannot  be 
avoided. A large a m o u n t  of work has been carried out  to find a suitable 

medium to el iminate this possible source of error. Glycerol, either pure or 
mixed with glass beads ES], is almost  free from convect ion effects but  often 
crystallizes at abou t  0.5 G P a  (5 kbar) ,  while high-viscosity silicone oils 
solidify near  1 GPa.  A 9:1 glycerol :e thanol  mixture does not  crystallize but  
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is still viscous enough not to allow convection currents and has recently 
been our preferred medium [3]. 

We report here a study of the effects of convective radial heat loss on 
the accuracy of thermal diffusivity measurements by Angstr6m's method 
and its many variations. This study was carried out partly to verify that the 
two-frequency method of Sundqvist and B~ickstr6m [4] works in viscous 
fluid media and, partly, to try to find a simple criterion for avoiding 
convection effects. Since the viscosity of all fluids increases with pressure, 
the study was carried out at atmospheric pressure, which is the worst case 
situation. We have studied the heat loss from a sample under various 
circumstances, and we have found an approximate expression for predicting 
under what conditions the experimental error becomes unacceptably high. 
We also present a new modification of /~ngstr6m's method [Eq. (13) 
below], valid only under extreme conditions of convective heat loss. 

2. THEORY 

2.1. Condensed Theory for ~ngstriim's Method and Some of Its Variations 

We repeat briefly the theory for/~ngstr6m's method [J-7] ,  mainly to 
define the notation used. In this method, a rod is heated at one end by a 
periodically varying power. The resulting axial temperature wave is studied 
at two points along the rod, and a is calculated from the phase shift �9 and 
the attenuation q of the wave. The temperature along the rod is given by 
[5 7] 

a(d 2 T/dx 2) = dT/dt + # T  ( 1 ) 

where #T takes into account radial heat loss. The solution to Eq. (1) is 

T(x, T) = To exp[(~ + i/3)x + i0)t] (2) 

where ~ = (In q)/L, /3 = q~/L, o9 is the angular frequency of the temperature 
wave, and L is the distance between the two measurement points on the 
sample. In/~ngstr6m's original method [5-7], /2 is a real constant and 

: [-/2 -~- ([2 2 "t- 0)2) 1/2 ] m/(2a) 1/2 (3a) 

/3 = [ - /2 + (/22 + 0)2)1/2] m/(Za)m (3b) 

/2 is easily eliminated between Eqs. (3a) and (3b) and a can be obtained as 

a = 0)/2c~/3 = 0)LZ/(2q 5 In q) (4) 

If desired, /2 can also be calculated from the measured quantities as 

# = a(~2 _/32) = (alL 2) [-(In q)2 _ q52] = 0)[(ln q)2 _ ~2]/(2q) In q) (5) 
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Contrary to popular opinion [6, 9], a real y can take into account only 
heat loss through radiation or forced convection [10], and a rod immersed 
in a dense medium loses heat mainly by conduction or convection. In the 
case of pure conduction (solid medium), we can use the theory for radial 
heat loss from a periodically heated cylindrical rod of radius r [101 to 
find [4] 

# = YI + ip2 = (22mtl/r2pCp) Kl(q)/Ko(q) (6) 

where Kn(t/) are modified Bessel functions [10] of complex arguments 
tl = ril/2(09/am) 1/2, 2m and am are the thermal conductivity and the thermal 
diffusivity of the medium, respectively, and p and Cp are the density and the 
specific heat capacity of the material studied. Replacing /~ in Eq. (1) by 
kq + i#2 and solving as before, we find 

= {j/2 1 + [ U  2 -~- (092) -~- #2)21a/2}l/z/(2a) m (7a) 

fl = { -~tl  + [/~ + (09 + kt2) 2 ] 1/2} ~/2/(2a)1/2 (7b) 

,~ngstr6m's original method is no longer valid, since c~fl = (09 + #2)/2a, or 

a --- (09 + #2)/2c~fl = (09 +#2) L2/( 2@ In q) (8) 

but a can still be found by repeating the measurements at two different 
frequencies 09j (j  = 1, 2) [41. Defining 

Q l ( r / )  = / / 1 ( 0 9 1 ) / / / 1 ( 0 9 2 )  = [0~(091)2 - f l ( 0 ) 1 ) 2 1 / [ 0 ~ ( 0 ) 2 ) 2  - ]~((D2) 2 ] (9a) 

Q2(r/) = #2(091 )/#2(092) (9b) 

we can calculate Ql(q) and Q2(t/) from Eq. (6) for any given ratio 091/092 
and, thus, find numerically a function Q2 = Q2(QI). By measuring qj and ~bj 
at the frequencies 09j we can calculate Q1 from Eq. (9a); from this we easily 
find Q2 using the known function Q2(Q1), and a is then calculated from [4] 

a = (092 Q2 -091)/[2(Ix2f12Q2 - -  ~1/~1)1 (10) 

Subscript j denotes value measured at 09j; as before, a j=  (In qj)/L and 
f l j= # J L .  Equation (10) has been used in a number of high pressure 
studies of a [1-3]. As before, the heat loss coefficients are easily found 
from Eq. (7): 

/zl = a(e 2 -/?2) = (a/L2)[(ln q)2 _ q52] ( l l a )  

I t2=2ao~f l - -09=(2a/L2)cP( lnq)-09  or ( l lb )  

#2 = 09[(aA/atrue)  - -  1 1. (1 lc) 

840/12/1-13 
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Equation ( l l a )  is identical to Eq. (5); note that the true a from Eq. (8) or 
Eq. (10) must be used here. Equation ( l l c )  is obtained by combining the 
value of a calculated by/~ngstr6m's formula [Eq. (4)], aa,  with the correct 
value obtained using Eq. (8) (taking #2 into account), atrue. 

2.2. Convection Effects 

No theory for the case of radial heat loss by convection in an 
~ngstr6m experiment has ever been developed. However, heat transfer by 
convection from long, thin cylinders is technologically important and has 
been extensively studied. The steady-state heat loss from heated wires or 
cylinders can be accurately calculated [11, 12] and some information is 
available on heat loss from periodically heated planes [11, 13] and even 
(thick) cylinders [11, 14]. The steady-state heat loss from rods with 
various axial temperature distributions has also been studied [11, 15]. 
However, in the present case we need to know the heat loss per unit surface 
area from a thin rod, heated periodically at one end, and with an exponential 
longitudinal temperature distribution. This case has never been studied 
theoretically, and we do not attempt to develop such a theory. Instead we 
use the available information about periodic heat loss from thick cylinders 
[11, 14] and planes [11, 13] to find some general guiding principles. 

At low frequencies the convection currents follow the variations in T, 
but with some time delay z. If co is very low it is reasonable to assume that 
z is constant and independent of co, corresponding to a phase shift zco 
radians. In this case 

(12) 

Neither of the methods presented above can now be used to measure a, but 
an exact expression can still be found for a as a function of c~ and fl: 

a = 0 9 1 0 9 2 ( 1  - Q1)/(02CXlfll - ~ 1  ~x2f12)  (13) 

The practical usefulness of Eq. (13) is doubtful, since it is valid only in the 
limit co ~ 0, with a corresponding large uncertainty in ~b and q; also, at 
low co,/~1 -~ constant and thus Q1 -~ 1, which also decreases the experimental 
accuracy. In analogy with Eq. (8) we can also write 

a= (co+#2)/2efl= (co/2efl)(1 + z#l) = aa(1 + z # l )  (14) 

Since z must be negative, the measured a is always smaller than the true 
a. At very high frequencies the convection currents are constant, and the 
heat loss is the sum of a constant convective term and a variable conduction 
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term of the form of  Eq. (6). We  assume tha t  the cons tan t  term affects only  
the mean  long i tud ina l  t empera tu re  d is t r ibu t ion  in the rod. The heat  loss 
seen by  the t empera tu re  wave is then only that  due to radia l  conduc t ion  
from the rod,  and  the theory  for the two-frequency me thod  [4.] should  
apply.  

Between these two extreme si tuat ions,  we should  have a b r o a d  t rans i t ion  
regime, where no simple theory  is valid. 

3. EXPERIMENTS 

3.1. Experimental Method and Equipment 

The present  exper iments  were carr ied out  on a piece of commerc ia l  
cons t an tan  the rmocoup le  wire (for use with Cu; nomina l  compos i t ion ,  
6 0 %  Ni  and  4 0 %  Cu)  with a nomina l  d iamete r  of 0.812 m m  (0.032 in.), 
ob ta ined  from O m e g a  Engineer ing Co., U.S.A. C o n s t a n t a n  was chosen 
par t ly  because few d a t a  are  avai lab le  on its thermal  t r anspor t  proper t ies ,  
and  pa r t ly  because we needed  a ma te r i a l  with a low thermal  diffusivity in 
o rde r  to minimize  reflection p rob lems  at very low frequencies (see below).  

The  exper imenta l  p rocedure  and  the compu te r -based  measuremen t  
system used have been descr ibed elsewhere [-2]. The specimen s tudied was 
m o u n t e d  vert ical ly at  the axis of  a cyl indr ical  conta iner  that  could  be ei ther 
evacua ted  or  filled with a sui table  fluid. The  fluids used are specified in 
Table  I, in which we also give l i te ra ture  da t a  for their  the rmophys ica l  
proper t ies .  Chrome l  wires, 0.15 m m  in d iameter ,  were spot  welded to the 

Table I. Thermophysical Properties at 295 K of the Fluids Used 
in the Present Investigation ~ 

Fluid (W.K-1 .m- i )  (m2.s-1) (m2.s 1) (K-I) 

Air 0.026 [16] 2.2 x 10 -Sb 1.6 • 10 -5c 3.4 x 10 3 
Hexane 0.12117] 8.3 • 10 -Sb 4.8 x 10 7c 1.4• 10-3 [22] 
Silicone oil a 0.12 [18] 8.3 • 10 -8 [ 1 8 ]  1.0 ::< 10 -6e 1.3 • 10 -3e 
Ethylene glycol 0.25 [19] 9.8• 10 8b 1.6• 10 -5 [19] c 6.9•  10 -4 [19] 
Glycerol 0.29 [20] 9.7 • 10-8 [20] 9.9 • 10 4c 4.0 x 10 4 [22] 

2 is the thermal conductivity, a is the thermal diffusivity, v is the kinematic viscosity, and 
is the volume thermal expansion coefficient. Numbers in brackets refer to references. 

b Calculated from 2, using density data from Ref. 16 and data for Cp from Ref. 21. 
c Calculated using data for density and/or viscosity from Ref. 16. 
d Dow Corning DC200 fluid. 
e Manufacturer's data. 
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specimen at the cold end and at the two measurement points, such that the 
sample itself was used as one leg of a differential thermocouple for the 
measurements [2, 4]. Two Alumel wires of the same diameter were also 
welded to the specimen, at the cold end and at the first (upper) measure- 
ment point, respectively, in order to find the actual temperature of the 
specimen [2].  

3.2. Experimental Results 

Figure 1 shows the results obtained for the thermal diffusivity a of the 
specimen at 300 K, when immersed in various fluid media, a was calculated 
from the experimental data for q and q~ using ~ngstr6m's original method 
[Eq. (4) above]. We have plotted a versus the period g2 = 2n/co, which was 
normally varied between 1 and 1000s in logarithmic steps (1-2-5 
sequence). Since the mean temperature T between the measurement points 
was kept constant at 300 (___2)K irrespective of the medium or of the 
frequency used, the temperature signal varied significantly, with wave 
amplitudes of > 5 K at low co, decreasing continuously toward zero at high 
co, with a corresponding inverse variation in the precision of the 
measurements of a. At very low co the precision was also low, since �9 and 
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Fig. 1. Thermal diffusivity, a, for constantan, calculated 
from experimental data using Eq. (4), versus the period of 
the temperature wave. Dashed lines are guides for the eye 
only. Symbols denote the various media surrounding the 
specimen: O, specimen in a vacuum; �9 in air; II,  in 
hexane; D, in silicone oil (DC200 fluid); A, in ethylene 
glycol; ~ ,  in glycerol. 
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In q both approached zero. Each point in Fig. 1 denotes the mean of 
between 5 (at high /2) and 30 (at low D) measurements. The standard 
deviation from the mean was normally smaller than the size of the symbol, 
but in a few cases larger values were observed (shown by error bars). 

Figure 2 shows the corresponding values of q and ~b as functions of s 
from the same experiments. The solid lines show, as a comparison, 
theoretical values corresponding to the case p = 0 (or p <<  co), calculated 
from Eqs. (3) using the experimental value a = 6 . 1 9 x  10-6m2-s  -1 (see 
below). The vacuum results follow these curves very closely up to about 
f2 = 30 s, but we also note that the experimental data for ~b follow the 
corresponding theoretical curve very well all the way up to f2 = 1000 s even 
in some liquid media, notably glycerol. This effect results from the structure 
of Eq. (3b) and was discussed in some detail in Ref. 4 as the basis of the 
"phase" method of measuring a. 

It is obvious from Figs. 1 and 2 that the presence of a fluid medium 
has a large effect on the measured values of q5 and q, and thus also on a, 
with the "best" results being obtained at high co. Note, however, that a 
depends on co even in a vacuum. This is due mainly to heat loss through 
the thermocouple wires: the change in thermal impedance at the welds 
gives rise to small reflected temperature waves which interfere with the 
measurements. In Fig. 3 we show the air and vacuum data together with 
the results (solid line) of a simple calculation of these effects, using the 
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Fig. 2. A t t enua t ion  q and  phase  shift q~ versus 
per iod  from the same exper iments  as in Fig. 1. 

Solid curves  are ca lcu la ted  for the case p = 0. 
Symbols  used are the same as in Fig. 1. 
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Fig. 3. Thermal diffusivity a versus period with the sample in 
air and in a vacuum. Solid curve was calculated using the 
transmission line model and shows the effect of temperature 
wave reflections; dashed curve was calculated using the same 
model but  also taking into account the effect of the imaginary 
heat loss coefficient/~2, as calculated for still air. Symbols are 
the same as in Fig. 1. 

transmission line model [23] and a value for a of 6.185 x 10 6 m 2 "s-1. It 
is clear that most of the deviations from linearity in the vacuum experiment 
are due to this effect. The small extra deviations at high (2 are probably 
due to the decrease in attenuation: since q ~ 1 as .(2 ~ ~ ,  a small temperature 
wave will reach the thermocouple at the cold end at sufficiently high (2. 
Since the temperature is measured differentially between this thermocouple 
and those at the measurement points, this will result in an experimental 
error. From the dimensions of the specimen, we calculate that a residual 
wave with an amplitude 0.1% of that at the first measurement point will 
appear at the cold end at q = 0.61, increasing rapidly to 1% at q = 0.72. In 
a vacuum, these values correspond to ( 2 -  30 and 100 s, respectively, in 
good agreement with the region where deviations from the calculated curve 
are observed. The calculations also show that reflections should not change 
much on changing the environment from a vacuum to air. Since much 
larger deviations from the calculated curve occur in the latter case, we 
conclude that other mechanisms must dominate in air. This is discussed 
further in the next section. 

From these results we conclude that the thermal diffusivity of constantan 
at 305 K is 6.19 x 10 - 6  m 2.  s - 1 .  Although the statistical uncertainty is below 
0.5 %, the total maximum error is about  3 % due to the uncertainty in the 
thermocouple distance L. Using Cp = 401 J .  kg -1-  K -~, extrapolated from 
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the data of von Eucken and Werth [24], and a density of 9.8.103 kg. m -3, 
we find 2 = 22.0 W.  m 1. K 1, in good agreement with literature data as 
given in a recent compilation [25 ]. 

4. DISCUSSION 

4.1. High-Frequency Limit: The Behaviour of #2 and a 

The main aim of this investigation was to test the assumptions made 
above regarding the theory of/~ngstr6m's method in a fluid environment, 
and it is convenient to discuss the high- and low-frequency regions 
separately, starting with the high-frequency end (f2-* 0). We postulated 
that for small f2 and large viscosities convection currents were constant 
and should not influence the measurements. We should then be able to 
calculate accurately the imaginary heat loss coefficient #2 using Eq. (6), 
provided that the thermal properties of the fluid medium and the specimen 
are known. We should also be able to use the two-frequency method of 
Sundqvist and B/ickstr6m [4],  Eq. (10), to find accurate values of a from 
the experimental data for q and q~. 

In Fig. 4, we show experimental data for Yz, calculated using Eq. (11b) 
and experimental data for a, q, and ~b, as a function of f2. We also show 
(solid curves) the corresponding theoretical values for lz 2, calculated from 
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F i g .  4. I m a g i n a r y  h e a t  loss  coe f f i c i en t  Y2 v e r s u s  t e m p e r a t u r e  

wave period (log-log scales). Solid lines calculated from 
Eq. (6) using data from Table I; the lines were calculated for 
(top to bottom) glycerol, ethylene glycol, DC200, hexane, and 
air (bottom left). Symbols are the same as in Fig. 1 and denote 
experimental data. 
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Eq. (6) using data given above and in Table I. The agreement between the 
two sets of data becomes very good for all fluids below 12 = 10 s, except at 
12 = 1 s, where the experimental accuracy is low (see above). As 12 ~ 0 we 
have, approximately, #2 ~ s 1/2, and thus co >>  #2 at sufficiently small 12. 
From Eq. (8) it follows that the measured value of a should tend toward 
the true value as /2--* 0, independently of the surrounding medium, in 
agreement with the data in Fig. 1. On the other hand, in the high-12 
convection region the experimental slope of #2 versus 12 becomes steeper 
than for the theoretical function, and at high 12 we find #2 oc 12-1, in 
agreement with the prediction in Eq. (12). From Eqs. (4) and (14) this is 
equivalent to a constant (but too low) experimental value for a, again in 
agreement with Fig. 1. 

In Fig. 5 we show again the same data as in Fig. 1 for fluid media, but 
now together with theoretical curves for a(12) calculated from the inverse 
of Eq. ( l l c )  using atrue = 6.19 x 10 - 6  m 2. s -1  and the calculated #2(12). The 
corresponding theoretical curve for air is also shown as a dashed line in 
Fig. 3. These curves thus show how the experimental values of a should 
depend on 12, if ~ngstr6m's original method were used and the specimen 
was encased in a medium with the same thermal properties as the medium 
actually used, but free from convection. Any differences between these 

6 I I I 0~ 

E 
E II �9 

4 - -  [ ]  �9 �9 �9 �9 --,--Bi- 

T, 

t.U ~ 

"r I I I 

1 113 10 2 113 3 

PERIO0, s 

Fig. 5. Same data and symbols as in Fig. 1. Curves show 
theoretical values for a, as calculated from theoretical data for 
#2. The curves were calculated for (top to bottom) hexane, 
DC200, ethylene glycol, and glycerol. The calculated curves 
are not shown at large periods, to avoid data overlap. Arrows 
with symbols denote the limiting values for a as 12--* oo, as 
calculated from Eq. (14). 
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curves and the actual experimental data must thus be caused by convection. 
We observe that the differences are indeed small, provided either that g2 is 
small or that the medium is highly viscous. Note particularly that even in 
the case of air (Fig. 3), #2 is large enough to cause a significant experi- 
mental error at (2 > 5 s, an error rapidly increasing with g2 until limited by 
convection effects above 50 s. The large magnitude of #2 is here due mainly 
to the small radius of the specimen [Eq. (6)]. ~ngstr6m's method is 
usually recommended for use in air or in inert gas media, but this 
particular source of error is rarely taken into account in spite of the fact 
that it can easily dominate the total error for thin samples. On the other 
hand, we also note that convection to some extent is a benevolent effect, 
counteracting and limiting the error caused by conduction heat loss. 

Finally, we show in Fig. 6 experimental data for a, calculated from the 
same experimental data for ~ and q as used in Fig. 1, but using the 
two-frequency method [Eq. (10)]. a is plotted versus the geometric mean 
~r of the periods used, ~'-~m =2n/(colco2) 1/2. The results shown look some- 
what similar to those in Figs. 1 and 5, but now the data obtained in the 
fluid with the highest viscosity, glycerol, are independent of co at low f2, in 
agreement with the discussion above. As expected, the results obtained in 
all media tend toward a constant value near 6.19 x 10 6 m 2 " S-1 as ~r~ ~ 0 ;  

for some unknown reason, however, the glycerol data are high by about 2 %. 
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Fig. 6. Thermal  diffusivity a versus period, as calculated 
from the data  in Fig. 2 using the two-frequency model, 
Eq. (10). The results are plotted versus the geometric mean 
of the periods used. Dashed lines are guides for the eye 
only. Symbols are the same as in Fig, 1. 
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4.2. The Low-Frequency Limit: The Behavior of ,/,/1 and a 

In Fig. 7, we show experimental data for the real heat loss coefficient 
#1, as calculated from Eq. (11a) and experimental data for ~b and q, using 
a = 6 . 1 9 x 1 0 - 6 m Z - s  -1. As a comparison we also show (solid curves) 
theoretical data for #1 for the case of pure conduction, again calculated 
from Eq. (6) using data from Table I. As for P2, the agreement between the 
two sets of data becomes quite good as (2 ---, 0, particularly for glycerol; the 
experimental data for ethylene glycol and hexane, however, deviate strongly 
from the theoretical curves at 1 s, probably because of experimental errors 
(see above). At large f2 convection effects add a large component to #1, 
and no agreement can be expected. However, in the case s 0% i.e., 
constant temperature, we should also be able to calculate #1 accurately. 
For long, horizontal, thin cylinders Morgan [12] gives the relation 

N u  = C R a  m ( 1 5 )  

between the Nusselt number Nu and the Rayleigh number Ra; in our 
notation 

Nu = Pl r2pcp/2~ (16) 

Ra = 8gc~ m r 3 T/va~ (17) 
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Fig. 7. Real heat loss coefficient p~ as a function of period. 
Curves are calculated from Eq. (6) for (top to bot tom) 
glycerol, ethylene glycol, DC200, and hexane. Symbols are the 
same as in Fig. 1. Arrows with symbols denote theoretical 
values for the case of constant  natural convection and were 
calculated using Eq. (15). 
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Here C ( - 1 )  and m (~-0.2) depend on Ra, g=9 .822  m .s -2 in Umegt, ~m 

is the volume thermal expansion coefficient of the medium, and v is its 
kinematic viscosity. For  a vertical sample, Morgan suggests that the value 
of #1 given by Eq. (15) should be reduced by a factor of 2. However, 
A1-Arabi and Khamis [26] have shown that this is true only for infinitely 
long cylinders and that #1 is almost independent of inclination angle for 
length-to-diameter ratios between 20 and 50, which includes the effective 
ratio for the warm part of our specimen. We have therefore calculated ~1 
(s oo) for our media using Eq. (15) directly, with values of C and m 
chosen according to Morgan [,12]. The results are given in Table II and 
shown as arrows on the right-hand border of Fig. 7. The agreement 
between the experimental and the theoretical values is surprisingly good: 
only for the silicone oil (open squares) is there a significant difference 
between the two sets of data. We believe that this large discrepancy must 
be due to some error in the manufacturer 's data used (Table I). 

As a final test, we have used the data for #2 from Fig. 4 to calculate z. 
In the low-frequency range we assumed a model in which # 2 = p l T c o =  
27z#lrf2 1 [-Eq. (12)], and the slope of ~2 versus s thus immediately gives 
r#l .  We can then either use this to find z, since the low-frequency value of 
/~1 is known, or use r#l  directly to calculate the limiting low-frequency 
value of a from Eq. (14), as a = 6 . 1 9 x  10-6(1 +z# l ) .  The results for z are 
given in Table II, while the results of the latter calculation are shown as 
arrows on the right-hand border of Fig. 5. For air, the predicted value is 
5.52 x 10 6 m 2 " s 1, which can be compared to the data in Fig. 3. Again, 
the agreement between the predictions and the experimental data is 
excellent, except for glycerol, where s 1000 s is not high enough to 
obtain the limiting value for a in the experiment. 

Table II. Experimental and Calculated Values for Some Heat Loss Properties 
(See Text for Details) 

Property Air Hexane DC200 Ethylene glycol Glycerol 

~1 (~ --' oo) 
Exp. 0.040 0.70 0.41 0.64 0.40 
Eq. (13) 0.040 0.70 0.64 0.68 0.40 

-~ (s) 2.8 0.8 2.1 5.0 >40 
~0 

Exp. 5 < 1 < 1 < 2.5 < 25 
Eq. (17) 0.1 0.26 0.37 2.0 18 
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4.3. Transition Frequency 

Although the most important aim of this investigation was to confirm 
the model given above, a secondary goal was to find a criterion for the 
choice of pressure transmitting medium in a high-pressure experiment. 
What we need to know is the lowest value required for the viscosity of the 
pressure transmitting medium, given the thermal transport properties of 
the medium and the specimen, and the dimensions of the specimen. 

The two-frequency method [Eq. (10)] works as long as the convection 
currents do not change significantly during half a period of the temperature 
wave. Our first attempt to estimate the time % necessary for convection 
currents to change was to use the expression of Parsons and Mulligan [27] 
for the time at which convection develops around a suddenly heated wire; 
in our notation 

% = 136(r2/am)(Ra . Nu)-O58 (18) 

This expression, however, contains #1 [through Nu; see Eq. (16)], which 
is a complicated function of many parameters, making calculations difficult. 
Also, the expression was found to overestimate significantly the usable 
frequency range. We have therefore used instead the expressions given by 
Siegler [281 for transient convection near a vertical flat plate. For this 
case, Siegler found that on changing the temperature of the plate, no 
convection occurred until at a time 

~o = 1.80[r(1.5am + V)/(gO~mam A T ) ]  1/2 (19) 

Using, again, data from Table I we have calculated Zo from Eq. (19) for the 
media used, and we present the results in Table II. These data should be 
compared with one half of the highest value of f2 at which Eq. (10) gives 
"correct" values for a, and these are also shown in Table II. Unfortunately, 
it is only for glycerol that we can make a reasonably valid comparison, but 
in this case the agreement is very good, and using ~'~max "~" 2T0 from Eq. (19) 
is, at present, the best available criterion for choosing a "convection-free" 
pressure medium. For air, theory predicts % =  1 s, but no significant 
deviations from the "conduction corrected" values of a occur until at > 50 s 
(see Fig. 3). This, however, is not surprising, since #2 << co at low f2, and 
neither convection nor conduction heat loss should have a large effect until 
#2 is a significant fraction of e~. Equation (19) is thus useful mainly for 
prediction of the convection limit of dense fluids. 

5. CONCLUSIONS 

From the discussion above, we conclude that the simple model assumed 
above gives a very good quantitative description of convection heat loss in an 
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~ngstr6m-type experiment, both at low and at high frequencies. Although 
no exact theory has been found for the intermediate-frequency range, this 
is of little importance here, since we are really interested only in the 
high-frequency range, where the Sundqvist-B~ickstr6m two-frequency 
method [4]  is valid. We have found that it is possible to calculate 
accurately both the magnitude and the relative phase of the heat loss at 
high frequencies. It is thus possible to measure approximate values of a in 
this range using Angstr6m's method and then to use theoretical values of 
/*2 to calculate the true values. Conversely, at low frequencies (large (2) we 
can calculate only the real part  of the heat loss, but by measuring a and 
the heat loss as functions of f2 it is again possible to deduce correct values 
for a using the ratio of real-to-imaginary heat loss coefficients. Alternatively, 
measurements in this frequency range can be carried out using a new 
variety of ~ngstr6m's  method presented here as Eq. (13) and valid only 
under conditions of heavy convection heat loss. We have also shown that, 
even in air, conduction and convection heat loss can cause large experi- 
mental errors for thin specimens, and finally, we have found a fairly simple 
criterion for choosing a suitable fluid high-pressure medium in which high- 
accuracy thermal diffusivity measurements by the two-frequency method 
are possible. 
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